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Abstract We consider a two-site Anderson Hamiltonian which includes hybridization both 
inside the same and between different sites, as well as Coulomb and exchange interactions 
between them. An exact diagonalization of this Hamiltonian is performed and the competition 
between the Kondo and MY interactions is studied as a function of the exchange, J, and 
the hybridization parameters. The local, uniform and staggered magnetic susceptibilities are 
calculated. From the correlation functions it is possible to see that the existence of the Kondo 
effect depends swongly on the ratio between the on-site and inter-site hybridizations. No 
divergence of the susceptibility was found at the critical J value for finite temperahlres. 

1. Introduction 

The properties of Kondo alloys and compounds containing cerium or other anomalous rare 
earths have been studied extensively over the last few years [l]. It is well known that the 
susceptibility of a single Kondo impurity has a Curie-Weiss behaviour at high temperatures, 
i.e. above the characteristic temperature TK (the Kondo temperature), and becomes non- 
magnetic below TK. In Ce compounds or concentrated alloys, there is substantial competition 
between the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the Kondo effect 
itself, which yields either a non-magnetic ground state, as in the singleKondo-impurity 
problem, or a magnetically ordered state at low temperatures. Many cerium compounds 
have been found experimentally to order magnetically at low temperatures (for example 
CeAlz, CeBs) or to have a non-magnetic behaviour (as in CeAl3, CeCuzSiz, CePd3B, etc) 
or even to present superconductivity as in CeCuzSiz and some uranium systems. However, 
neutron diffraction experiments have recently shown evidence of the existence of short-range 
magnetic correlations in non-magnetic cerium compounds which do not present any long- 
range order [2, 31. Non-magnetic cerium compounds are characterized at low temperatures 
by a Fermi liquid (so called ‘heavy fermion’) behaviour with very large values of the linear 
coefficient of the electronic specific heat, y ,  magnetic susceptibility and, in some cases, the 
coefficient of the T2 term of the resistivity [4]. 

Thus, the competition between the RKKY interaction and the Kondo effect has been 
extensively studied for a lattice, called the ‘Kondo lattice’ or the ‘Anderson lattice’ according 
to the different models studied. However, the problem of the lattice is not really solved. 
The two-impurity Kondo or Anderson model has recently been studied again in detail, as 
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it is a step towards solving the lattice problem and also allows the study of short-range 
magnetic correlations. 

The two-impurity Kondo problem has firstly been studied by the numerical 
renormalization group method in order to investigate the ground state and the propehes at 
T = 0 [5,6]. In addition to the two s-f exchange interaction Hamiltonians (on two sites) that 
define the Kondo temperature, TK, for the isolated impurity, a direct interaction 4 s : .  6 
is introduced between the spins of the localized f electrons with the resulting behaviour 
depending on the ratio J/TK, with a critical value JJTK = -2.2. For J 7 Jc the ground 
state, which corresponds to a triplet wave function for the localized electrons, is that of a 
correlated Kondo effect, while for J < Jc, the ground state is an uncompensated singlet with 
strong spin interactions and no Kondo effect occurs. Both regimes represent a Fermi liquid 
ground state. The J = Je value corresponds to an unstable fixed point and renormalization 
group calculations predict a divergence of y and of the staggered susceptibility x( ' )  at Jc. 
The two-impurity Kondo model has also been extensively studied by several theoretical 
methods: numerical Monte Carlo simulations for both the Kondo [7] and the Anderson [8] 
Hamiltonians, a critical theory using conformal field-theory methods [9], renormalization 
group [lo] and variational methods for the Anderson Hamiltonian [ l l ,  121. It is also found 
that the Kondo effect occurs for large J values and disappears for small J values and that 
these two regimes are separated by a multicritical point. The behaviour of the staggered 
susceptibility x(') around the critical point generates some controversy, since it is either 
weakly divergent or not diverging according to simulation calculations [7] or variational 
method calculations for the classical s-f exchange Hamiltonian [ 121, while some variational 
theory calculations predict a divergence of x(" at the critical value of J in the Coqbli- 
Schrieffer l i t  [12]. 

The competition between the Kondo effect and the RKKY interaction has also been 
studied within the so called 'molecular model' which starts from the Anderson Hamiltonian 
in two atoms, with only one level at each atom for the conduction electron, and only a 
simple hopping term for the interaction between the two impurities 1131. Results depend on 
the ratio between the hopping temperature t and Kondo temperature, TK; for t <( TK two 
independent Kondo singlets are formed, while for f >> TK the impurity spins have strong 
antiferromagnetic correlations. The periodic Anderson Hamiltonian in onedimensional 
chains of from three to six sites has also been studied by exact diagonalization [13]. In the 
weak coupling lit, the results for the short-range magnetic correlations suggest a smooth 
transition from a ferromagnetic state at low electron concentration to an antiferromagnetic 
state at half-fillig [13]. 

The purpose of the present paper is to study the two-site problem within the 'molecular' 
model of two atoms with two localized (f like) and conduction (d or s like) electron states, 
described by the Anderson Hamiltonian but including hopping, exchange and inter-site 
hybridization interactions between the two sites. The direct f-f hopping term is neglected 
as usual [S, 7, 111, because the 4f electrons are strongly localized and the 4f bandwidth 
is zero or negligible, so that the exchange interaction between f electrons in rare-earth 
materials arises from the indirect m - t y p e  mechanism via the conduction electrons. In 
this paper, we have introduced both the on-site (VI)  and inter-site (VZ) hybridization terms 
and we give an exact analytical solution for the case VI = VZ. We will study the influence 
of the new term Vz on the Kondo effect and then we present the resnlts for the magnetic 
susceptibility and correlation function as a function of the different parameters. 
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2. The two-site problem 

The Hamiltonian of the two-site problem is the sum of two on-site terms and an inter-site 
term 

H = Ho + Hiz 
with the on-site Hamiltonian defined by the Anderson Hamiltonian 

and the inter-site Hamiltonian written BS 

where Eo is the energy of the f electrons, EB that of the d electrons, UR is the Coulomb 
repulsion between f electrom at the same site, VI is the on-site hybridization, V2 is the 
inter-site hybridization, t is the d-d hopping, U and J are the Coulomb and exchange 
integrals, respectively, between the f electrons at different sites and 

ni = nit + ni$ 
f + -  t .  
f - -  t .  

s -&& 
s -&At  

f - 1 sf+$- +sf-sf+ s : * S z - i . (  1 2 1 2 )+$A. 
(4) 

SI 'L d ( n .  2 l t  - n d  

In the inter-site Hamiltonian given by equation (3), we have considered the d-d hopping, 
corresponding to the d band in the case of a real compound and the inter-site hybridization 
between the localized 4f and the band-like d electrons. However, we have completely 
neglected the f-f hopping term, because the 4f electrons are well localized. The Hamiltonian 
(1) can be exactly solved analytically in the case VI = V2 = V and Ufi + CO, while it 
is exactly solvable numerically in the general case with different VI and VZ values. In the 
particular case VI = VZ, we have derived an analytical solution of both the eigenvalues and 
eigenfunctions of H for an infinite value of the f-f Coulomb repulsion (Us + 00). If one 
writes 

si = sf + s; (5) 
and 

s = S I  + s2 
the Hamiltonian (1) commutes with S, and S2 

[ H ,  Szl = [ H ,  S,] = [S', SJ = 0 (7) 
so the eigenstates of H are also eigenstates of S2 and S,. 

We have studied the problem with two electrons per atom, i.e. N = 4 electrons, and we 
have built up the different eigenstates, starting from the eight states &LlO) and d L  10) (with 
i = 1,2  and U =f, 4). For VI = Vz there are 70 different eigenstates in the case of a finite 
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Us value and 41 in the limit Uff + CO. In this case we can derive an analytical solution 
for the eigenstates; there are 13 different eigenvalues given in table 1. The energies are 
measured with respect to the energy of the d electrons; EB = 0. In table 1, we give also the 
degeneracy of each eigenenergy and the values of S and S, for the different eigenfunctions. 

The eigenstates are found here by an analytical diagonalization and we will see in the 
next section that the ground state depends on the different parameters and in particular on 
J .  Then we calculate the three on-site x ,  uniform x ( ~ )  and staggered x(') susceptibilities, 
that we define respectively by 

with f3 = ( ~ B T ) - '  and s'(s) = erHs'e-*'. Here, we take k~ = R = 1. A straightforward 
calculation yields the values of the susceptibilities as a function of the 13 eigenenergies E,  

with 

Thus, the three susceptibilities as well as the correlation functions ($e Si) between the 
two impurity spins and (e. Sf}, between f and d electrons at the same site, are computed 
analytically for VI = Vz. The results are presented in the next section. 

3. Discussion of the theoretid results for y = & = v 
First of all, we compute the eigenvalues and we see that the ground state is the energy E12, 
corresponding to S = 0 for J values smaller than the critical value Jc and then the energy 
E8 corresponding to S = 1 for J values larger than Jc. The critical value Jc, which is very 
close to zero, does not vary very much with U and negative EO values and increases with 
increasing V .  

The 41 eigenfunctions corresponding to the 13 eigenenergies have been computed 
analytically for VI = VZ = V ,  but we do not present them here; however, see appendix 
A for the eigenfunctions Corresponding to the energy E12 with total spin S = 0 and the 
three eigenfunctions corresponding to the energy Eg with a total spin S = 1. Thus, one 
goes from a state, for J smaller than .Ic, with an antiferromagnetic coupling between the f 
electrons on the two sites, to a state, for J larger than J,, with a ferromagnetic coupling 
between the f electrons on the two sites. 



A simple model for the two-site Anderson Hamiltonian I111 

'pable 1. 

Energy Degeneracy Values of S and S, 
E1 = 2 E o + U  - J 8 s =2,s, = i2.*1.0 

s = 1,s, = i1.0 

Ez = 2(Eo + t )  + U - J s = I.S, = i l . 0  3 

Z 
E3 = 3Eo+t  2 + U +  J + / ( E o  - 1 ;  U +  J ) +2VZ 

3 E o + t + U +  J -/- 
2 

Ed = 

3Eo + t  + U - J +/- 
2 

3Eo + t  + U - J 
2 

E6 = 

E, =  EO - t )  + U - J 
2 

2 
E8 = 

E9 = Eo - t 

4 s = 1, s, = i l ,  0 

s =o, s, = 0 

4 s = I,S, = f1.0 

s=o,s, = o  

s = 1. s, =*Lo 
s = 0. s, = 0 

4 

4 S = 1 , S , = i l , O  

s =o, s, = 0 

3 S=l.S, = fl.O 

4 s =  l,sz = 11.0 
s =o. s, = 0 

s =o, s, = 0 

s =o, s, = 0 

1 

1 

I S=O,S, = o  

1 s = o,s, = o 

CO = 8VZ(2Eo + U + J - 2 )  
CI = (Eo - t)(2Eo + U + J - 22) - 12V2 
Q =3( t  - Eo)- U - J 
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We present now the calculations performed for the susceptibilities and the correlation 
functions as a function of temperature, for a reasonable set of parameters: EB = 0 , 
EO = -1, t = 3, U = 1 and V = 0.3, in units of A = EB - EO, equal to 1. In the 
experimental case of cerium compounds, we can take this arbitrary unit approximately equal 
to 1 eV. Thus, all the quantities, which are listed in the following, have to be multiplied by 
A, if one would like to have the parameters expressed in real energy units. 

-._. .. 
......... .. . ... .. .. .. . .. . . . , 

0.001 5 O.0OlS 0.0023 

J 
F i i  1. 
susceptibilities as a function of J for f = 3. U = 1. V = 0.3 and T = 
value of J is near 0.0019 

Plot of the local (full line), uniform (dashed) and staggered (dot-dashed) 
Tk critical 

Figure 1 exhibits the three uniform, local and staggered susceptibilities as a function 
of J for a very low temperature, T = as an example, if we take A = 1 eV, T is 
almost equal to 1 K. We see that the staggered susceptibility is passing through a maximum 
at a J value approximately equal to the critical value Jc separating the two domains S = 0 
and S = 1. This maximum happens for all finite temperatures, the staggered susceptibility 
diverging only at strictly zero temperature and J = Jc. In the present case, one obtains 
J,=0.001940rJc=225KforA= 1 eV. 

Let us examine the behaviour of the three susceptibilities in the zero-temperature limit. 
First, the expression F(Em -E,,,,) diverges when the energies E,,, and E,,,, are equal to each 
other and equal to the ground state energy. Then in addition, the susceptibilities diverge 
only if the matrix elements in front of F(E,,,, E,,,,) are non-zero when the temperature tends 
to zero. For J e J,, the ground state is Elz and S = 0; according to the formula (25) of 
appendix A, all the matrix elements are equal to zero and the three susceptibilities remain 
finite for T + 0 and J < Jc. In contrast, for J z Jc, the ground state is ,338 and S = 1; 
the matrix elements in equations (11) and (12) are non-zero and x and x(") diverges, while 
,y") remains finite for T -+ 0. Finally, at J = Jc, El2 = E8 and the three susceptibilities 
are diverging. Thus, the staggered susceptibility diverges at J = Jc for T -+ 0, while the 
two other susceptibilities x and x(") diverge for J 2 Jc. 

The next question to answer is that of the occurrence of the Kondo effect in the 
two domains with S = 0 and S = 1. In this oversimplified model with a zero-width 
conduction band, the relevant quantity for studying the 'Kondo effect' on each site, i.e. the 
compensation of the f magnetic moment by the d magnetic moment, is the d-f correlation 
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Figure 2 Plot of the local d-f mrrelation fundion ($. St) (a) and of the two-site f earrelation 
function (Sf. S:) (b) for J c J. (dashed lines) and 3 > 3. (fuU) as a funetion of temperature, 
for V = 0.3. f = 3. and U = 1. 

function on the same site, (Si". g).  Figure 2(a) gives the temperature dependence of the 
d-f correlation function on the same site g .  q), for two values of the parameter J below 
and above Jc. We can see that the on-site correlation function remains very small and that 
there is almost no spin compensation due to the Kondo effect: at very low temperatures the 
correlation function corresponds to roughly 1/100 of the S = 1 value for J > Jc and of 
the S = 0 value for J c .Ic. Thus, there is a very weaEKondo effect for J c Jc. On the 
other hand, figure 2(b) shows the f-f Correlation function (8 .$). At low temperatures the 
correlation function is characteristic'of an antiferromagnetic coupling (S = 0) for J c Jc 
and a ferromagnetic one (S = 1) for J > Je. 

Figure 3 gives the temperature dependence of the three susceptibilities in the same 
system with A = 1 for a value of J smaller than Jc and the curves are similar to the ones 
previously derived for the case J = 0 and with only an on-site hybridization term [ 111. The 
local and staggered susceptihilities show a plateau below a temperature TK of order lo4 
(or 1 0  K for A = 1 eV), indicating a weak Kondo effect with a Kondo temperature TK. 
The uniform susceptibility goes through a maximum with decreasing temperature tending 
to zero. 

T 

4 A>' p!' 

- 
4.5 .'I" -- 

A 
??- 
~ - -0.3 ._I_._ -If? 

Figure 3. not  of the loeal (full line), uniform (dashed) 
and staggered (dot-dashed) susceptibilities as a function 
of t e m p "  for the same llaramefers as in figure 1 

Figure 4. Plot of the Iwo-sib f correlation function 
(Sf . S:) as a function of temperature for six merent 
values of f :  f = 0 (umr  curve), 0.02. 0.04. 0.06. 0.08 

andJ=O. 
.. 

and 0.1 (lowernwe) and U = 1, VI = 0.06, v2 = 0.02 
and J = 
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Thus the transition occurring at Jc corresponds to an antiferromagnetic-ferromagnetic 
transition for the f electrons, without appreciable Kondo effect on the two sides. So, the case 
VI = Vz gives a very weak Kondo effect, in contrast to the classical Anderson Hamiltonian 
with only an hybridization term between d and f electrons on the same site. 

4. Discussion of the theoretical results with different values of VI and V2 

In this section, we study the general case with different values of VI and Vz and Ufi + 03. 

The Hamiltonian (1) with fl # Vz cannot be solved analytically and the determination 
of both the eigenvalues and eigenfunctions needs numerical calculations. Thus, we will 
present here the main results obtained for VZ different from VI. The general behaviour of 
the susceptibilities versus i n c m i n g  J values is similar here to that shown on figure 1 for 
V, = VZ; in particular, the staggered susceptibility exhibits a maximum at a critical J value 
for finite very low temperatures. In the zero-temperature limit, the staggered susceptibility 
diverges only at J = Jc, while x and x(") diverge for J 3 Jc and remain finite for J < Jc. 

In order to study the occurrence of the Kondo effect as a function of VZ and VI we 
have plotted in figures 4 and 5 the two correlation functions ($ . Si) and (e . G) as a 
function of temperature for different values of VI and V, (VI = 0.06 and a much smaller 
VZ value, VZ = 0.02). The different curves are plotted as a function of t ,  from t = 0 to 
t = 0.1 (in the usual unit system with A = 1). It is interesting to discuss here this choice 
of parameters; in fact, if one takes the previously chosen value t/A = 3 of section 3, one 
obtains no Kondo effect, exactly as is shown in figure 2(b). The Kondo effect exists only 
for very small values o f t  and consequently we have chosen small t valnes in order to study 
clearly the influence of Vz on the Kondo effect. 

.," .....- -0.5 ..... I 
10.9 1 o* i 0 5  10.2 , 0" 0.00 0.03 0.06 ono 0.1 2 

T v, 
Figure 5. Plot of the local d-f correlation function 
(S: . e) as a function of temperature for six different 
values off: f = 0 (lower me), 0.02. 0.04, 0.06, 0.08 
andO.l (uppercurve) and U = 1. VI = 0.06, v2 = 0.02 
and J = 

F i  6. Plot of the local d-f correlation function 
(S'.q) (dashed) and thetwo-site f correlation function 
(Sf . Si) (full) as a fundion of Vz for t = 0.02, 
VI = 0.06, U = 1 and J = 

One can see that the d-f correlation function is of order -0.5 at very low temperatures, 
for very small values of t ,  while it increases rapidIy with increasing t .  Conversely, the two- 
site f-f correlation function is almost equal to zero for t = 0, as expected, and decreases 
rapidly when increasing t .  Thus, at very low temperatures one goes from a Kondo-like 
behaviour with ferromagnetic-lie coupling between the two sites for t = 0 to a magnetic 
behaviour on each site with an antifemomagnetic-like coupling between the two sites for a 
larger t value, of the order of 0.1. 
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In fact, in our approach, since there is only one d level and one f level on each site, 
the Kondo effect is understood as giving a negative value close to -3/4 for the d-f on-site 
correlation function (sf. S:) indicating a ‘compensation’ of the f magnetic moment by the 
d magnetic moment. In fact, even for a very small t value, as shown on figure 5, the Kondo 
effect is incomplete since the negative value of the d-f correlation function remains still 
larger than -3/4. 

and K(‘) exhibit the same behaviour for the set of 
parameters used in figure 4 and 5 as that previously shown in figure 3, i.e. a Curie 
Weiss behaviour at high temperatures and a plateau at low temperatures below a given 
temperature TK. Also, the staggered susceptibility is larger than the uniform one. The 
differences between the different cases lie in the value of the so-called Kondo temperature 
TK and consequently in the very low-temperature values of the local susceptibility. T, is 
of order (in A = EB - Eo units) in figure 3, with t = 3; and of order for the 
previous set of parameters with t = 0.08 and with t = 0.01. As a consequence, the 
very low temperature value of ,y decreases with increasing TK (or decreasing t )  and varies 
usually as ~ / T K ,  as expected within the Kondo theory. Thus, we see that TK is obviously 
larger when the d-f correlation function is more negative at low temperatures. 

Finally, figure 6 gives the very low-temperature values of both the d-f correlation 
function (Si Sf) and the two-site f correlation function (Si. e) as a function of the 
parameter VZ for a given value of VI, from V2 = 0 to a large value VZ = ZVI. The d-f 
correlatiqn function increases from a value close to -3/4 to a value very close to 0 for 
V2 equal or larger than VI. Conversely, the two-site f correlation function decreases with 
increabg V2, passes through a minimum for V2 = V, and increases again for V2 larger than 
V,. Thus, the inter-site hybridization fi tends to suppress the Kondo effect which exists 
only when both t and Vz are small compared to the intra-site parameters EB - EO, U and 
v,. 

The three susceptibilities ,y, 

5. Concluding remarks 

Thus, our simple ‘molecular’ model gives a typical Kondo behaviour for the magnetic 
susceptibility, in agreement with previous results [12]. The staggered susceptibility passes 
through a maximum for non-zero temperature at the critical J value separating the two 
magnetic regimes. However, we have shown here that the addition of the inter-site 
hybridization term VZ tends to suppress the ‘Kondo effect’, i.e. the compensation between 
f and d magnetic moments, and to restore the antiferromagnetic coupling. In particular, we 
have treated, analytically, the case VI = VZ and we have shown that there remains only a 
very weak Kondo effect on the two atoms when there is an antiferromagnetic-like coupling 
between the f magnetic moments of the two atoms. Finally, in our study with different VI 
and VZ values, we have also shown that the Kondo effect exists only for small V2 and t 
values. In spite of its crudeness, our model provides interesting information on the role of 
the two-site hybridization term V, and confirms the effect of the intersite exchange coupling 
J and of the d-d hopping term t on the magnetic properties of the system. 
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