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Abstract. 'We consider a two-site Anderson Hamiltonian which includes hybridization both
inside the same and between different sites, as well as Conlomb and exchange interactions
between them. An exact diagonalization of this Hamiltonian is performed and the competition
between the Kondo and rkkY inferactions is studied as a fanction of the exchange, J, and
the bybridization parameters. The local, uniform and staggered magnetic susceptibilities are
“calculated. From the correlation functions it is possible to see that the existence of the Konde
effect depends strongly on the ratio between the on-site and inter-site hybridizations. No
divergence of the susceptibility was found at the critical J value for finite temperatures.

1. Introduction

The properties of Kondo alloys and compounds containing cerium or other anomalous rare
earths have been studied extensively over the last few vears [1]. It is well known that the
susceptibility of a single Kondo impurity has a Curie—Weiss behaviour at high temperatures,
i.e. above the characteristic temperature 7y (the Kondo temperature), and becomes non-
magnetic below Tx. In Ce compounds or concentrated alloys, there is substantial competition
between the Ruderman—Xittel-Kasuya—Yosida (RKKY) interaction and the Kondo effect
itself, which yields either a non-magnetic ground state, as in the single-Kondo-impurity
problem, or a magnetically ordered state at low temperatures. Many cerium compounds
have been found experimentally to order magnetically at low temperatures (for example
CeAly, CeBg) or to have a non-magnetic behaviour (as in CeAls, CeCu,Siz, CePdsB, etc)
or even to present superconductivity as in CeCuzSiy and some uranjum systems. However,
nentron diffraction experiments have recently shown evidence of the existence of short-range
magnetic correlations in non-magnetic cerium compounds which do not present any long-
range order [2, 3]. Non-magnetic cerium compounds are characterized at low temperatures
by a Fermi liquid (so called ‘heavy fermion’) behaviour with very large values of the linear
coefficient of the electronic specific heat, 3, magnetic susceptibility and, in some cases, the
coefficient of the T2 term of the resistivity [4].

Thus, the competition between the RKKY interaction and the Kondo effect has been
extensively studied for a lattice, called the ‘Kondo lattice’ or the ‘Anderson lattice’ according
to the different models studied. However, the problem of the lattice is not really solved.
The two-impurity Kondo or Anderson model has recently been studied again in detail, as
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it is a step towards solving the lattice problem and also allows the study of short-range
magnetic correlations.

The two-impurity Kondo problem has firstly been studied by the numerical
renormalization group method in order to investigate the ground state and the properties at
T = 0[5, 6]. In addition to the two s—f exchange interaction Hamiltonians (on two sites) that
define the Kondo temperature, T, for the isolated impurity, a direct interaction —J 8% - §%
is introduced between the spins of the localized f electrons with the resulting behaviour
depending on the ratio J/ Tk, with a critical value J./Tx = —2.2, For J > J; the ground
state, which corresponds to a triplet wave function for the localized electrons, is that of a
correlated Kondo effect, while for J < J, the ground state is an uncompensated singlet with
strong spin interactions and no Kondo effect occurs. Both regimes represent a Fermi liquid
ground state, The J = J, value corresponds to an unstable fixed point and renormalization
group calculations predict a divergence of y and of the staggered susceptibility x © at J;.
The two-impurity Kondo model has also been extensively studied by several theoretical
methods; numerical Monte Carlo simulations for both the Kondo [7] and the Anderson [8]
Hamiitonians, a critical theory using conformal field-theory methods [9], renormalization
group [10] and variational methods for the Anderson Hamiltonian [L1, 12]. It is also found
that the Kondo effect occurs for large J values and disappears for small J values and that
these two regimes are separated by a multicritical point. The behaviour of the staggered
susceptibility x© around the critical point generates some controversy, since it is either
weakly divergent or not diverging according to simulation calculations [7] or variational
method calculations for the classical s—f exchange Hamiltonian {12}, while some variational
theory calculations predict a divergence of ¥ at the critical value of J in the Coqblin—
Schrieffer limit [12].

The competition between the Kondo effect and the RKXY interaction has also been
studied within the so called ‘molecular model’ which starts from the Anderson Hamiltonian
in two atoms, with only one level at each atom for the conduction electron, and only a
simple hopping term for the interaction between the two impurities [13]. Results depend on
the ratio between the hopping temperature ¢ and Kondo temperature, Ty; for ¢t € Ty two
independent Kondo singlets are formed, while for 7 3> Tk the impurity spins have strong
antiferromagnetic correlations. The periodic Anderson Hamiltonian in one-dimensional
chains of from three to six sites has also been studied by exact diagonalization [13]. In the
weak coupling limit, the results for the short-range magnetic correlations suggest a smooth
transition from a ferromagnetic state at low electron concentration to an antiferromagnetic
state at half-filling [13].

The purpose of the present paper is to study the two-site problem within the ‘molecular’
model of two atoms with two localized (f like) and conduction (d or s like) electron states,
described by the Anderson Hamiltonian but including hopping, exchange and inter-site
hybridization interactions between the two sites. The direct f-f hopping term is neglected
as wsual [5, 7, 11], because the 4f electrons are strongly localized and the 4f bandwidth
is zero or negligible, so that the exchange interaction between f electrons in rare-earth
materials arises from the indirect RKKY-type mechanism via the conduction electrons. In
this paper, we have introduced both the on-site (V) and inter-site (V) hybridization terms
and we give an exact analytical solution for the case Vi = V2. We will study the influence
of the new term V; on the Kondo effect and then we present the results for the magnetic
susceptibility and correlation function as a function of the different parameters.
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2. The two-site problem

The Hamiltonian of the two-site problem is the sum of two on-site terms and an inter-site
term

H=Hy+ Hp (D

with the on-site Hamiltonian defined by the Anderson Hamiltonian
2
U
Ho=3Y > |:Eon§cr + Egng, + ?”fn,f,n,f? + Vildl fio + _ﬁ.:f,d,.,,)] ')
i=l o

and the inter-site Hamiltonian written as

Hypp =t E(dfadzu +di dis) + V2 E(d}:,fza +d}, fio +HO)
o o

+ (U = 2 )yninl 2785 . St (3)
where Eg is the energy of the f electrons, Ep that of the d electrons, Uy is the Coulomb
repulsion between f electrons at the same site, V; is the on-site hybridization, V; is the
inter-site hybridization, ¢ is the d—d hopping, U/ and J are the Coulomb and exchange
integrals, respectively, between the f electrons at different sites and

np =y + Ny
s+ — f;‘!}\f4
s = £ i @

SF, = Sy —ny)
8% .8 = L(STrsT + ST S5h) + ST, 8E,.

In the inter-site Hamiltonian given by equation (3), we have considered the d-d hopping,
corresponding to the d band in the case of a real compound and the inter-site hybridization
between the localized 4f and the band-like d electrons. However, we have completely
neglected the f—f hopping term, because the 4f electrons are well localized. The Hamiltonian
(1) can be exactly solved analytically in the case ¥; = V¥, = V and Uy — oo, while it
is exactly solvable numericaily in the general case with different V; and V; values. In the
particular case V; = V», we have derived an analytical solution of both the eigenvalues and
eigenfunctions of H for an infinite value of the £ Coulomb repulsion (/g — cc). If one
writes

8; = S5] + & (5)
and

S=85+5 (6)
the Hamiltonian (1) commutes with S, and §°

[H, $%]=[H, S,]=[5%85,1=0 Q)

so the cigenstates of H are also eigenstates of § and §,.

We have studied the problem with two electrons per atom, i.e. N = 4 electrons, and we
have built up the different eigenstates, starting from the eight states _ﬁ-ﬁ. [0} and a’,-‘\ﬂr |0} (with
i=1,2and ¢ =%, ). For V; = V; there are 70 different eigenstates in the case of a finite
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Uy value and 41 in the limit Uy — co. In this case we can derive an analytical solution
for the eigenstates; there are 13 different eigenvalues given in table 1. The energies are
measured with respect to the energy of the d electrons; Eg = 0. In table 1, we give also the
degeneracy of each eigenenergy and the valnes of § and S, for the different eigenfunctions.

The eigenstates are found here by an analytical diagonalization and we will see in the
next section that the ground state depends on the different parameters and in particular on
J. Then we calculate the three on-site x, uniform x® and staggered x© susceptibilities,
that we define respectively by

s
y = f dr(st (st} ®
0
g ]
x® =} [ sty + skomst, + i @
[
x® =1 fo de{[S, () — S5(ISE, — SE.1) (10)

with B = (kg T)~" and S(1) = e"?S%e~"#. Here, we take kp =% = 1. A straightforward
calculation yields the values of the susceptibilities as a function of the 13 eigenenergies E,,

X =2 F(Em, Ex)|(m|S{,Im")]* (11)
x® =13 F(En, Em)(m|(S], + SL)Im)[? 12
X9 =13 F(En, En)iml(S], — SE)Im") (13)

with

1 e__ﬁ B e_ﬁEm
Tr(e—#H) E,, — Ep
Thus, the three susceptibilities as well as the correlation functions {57 . Sf) between the

two impurity spins and {Sf - 8%}, between f and d electrons at the same site, are computed
analytically for V| = V5. The results are presented in the next section.

F(En, Ew) =

(14)

3. Discussion of the theoretical results for Vi = Vo, =V

First of all, we compute the eigenvalues and we see that the ground state is the energy Eia,
corresponding to S = 0 for J values smaller than the critical value J; and then the energy
Ejg corresponding to § = 1 for J values larger than J.. The critical value J;, which is very
close to zero, does not vary very much with IV and negative E; values and increases with
increasing V.

The 41 eigenfunctions corresponding to the 13 eigenenergies have been computed
analytically for V; = V2 = V, but we do not present them here; however, see appendix
A for the eigenfunctions corresponding to the energy Ey» with total spin S = 0 and the
three eigenfunctions corresponding to the energy Eg with a total spin § = 1. Thus, one
goes from a state, for J smaller than J., with an antiferromagnetic coupling between the £
electrons on the two sites, to a state, for J larger than J., with a ferromagnetic coupling
between the f electrons on the two sites.
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Table 1.
Energy Degeneracy ‘Values of § and §;
B =2Eq+U —1T 8 §=2,8 =%2,%1,0
§=1,8==%1,0
Ex=2E+1)+U—-J 3 §=15==10
2
E3=3Eo+::U+J+\/(Eo—t:U+J) oy 4 S=L§ =210
§=0,85=0
2
E4=350+1;U+J_\/(En—t—zl—v+.}') 2w 4 S=1.5 =10
§=08=0
F3
E5=3Eo+z:-U-J+\/(Eo_t;'U—J) e 4 §=1,5 ==%1,0
§=0,8,=0
2
Eﬁ=3E°+’2+U"J—\/(E°_';'U_J) +6V2 4 S=1,8 =210
§=0,8=0
2
E7=3(30—:)2+U—J+‘/(Eo—z42rv-.r) a3 §=1,5 =%1,0
2
E8=3(Eu—1)2+U—J__\/(Eu—t-zi-U—J) L av2 3 §=1,8 =+1,0
Ey=Eg~t 4 S=l,Sz=i1,0
§=0,5.=0
En=2Eq+0)+ U+ 7 1 §=0,§=0
En:ZﬁCOS%—% 1 S—O:Sz=
E12=uﬁcos%~%—\/3_qsin(§) 1 §=0,5 =0
E|3=~J§cns%~;—z+ﬁsin(§) 1 F=085=0

Where

-

r= é(c;cz—.'ico)— Ec%

=8V Q2Ey+U+J—2)

61 = (By—n(2Ey+ U +J -2y — 12v2
=30t—-E)-U-17J

(15)

(16)

{an
(18)
(19
(20)
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‘We present now the calculations performed for the susceptibilities and the correlation
functions as a function of temperature, for a reasonable set of parameters: Ep = 0,
Eg=—-1,t=3U=1and V = 0.3, in vnits of A = Ez — Ep, equal to 1. In the
experimental case of cerium. compounds, we can take this arbitrary unit approximately equal
to 1 eV. Thus, all the quantities, which are listed in the following, have to be multiplied by
A, if one would like to have the parameters expressed in real energy units.

36000.0
'
it:
it
it
240000 - :
i
i
ifit
= Pfi
(B 1]
il
Flii
12000.0 ilit
Flit
3 [
i i
a i
- \
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0.0015 D.0018 0,0023

Figure 1. Plot of the local (full line), uniform (dashed) and staggered (dot-dashed)
susceptibilities as a function of J fort =3, U =1, V=03 and T = 10~5, The critical
value of J is near 0.0019

Figure 1 exhibits the three uniform, local and staggered susceptibilities as a function
of J for a very low temperature, T = 1075; as an example, if we take A =1 eV, T is
almost equal to 1 K. We see that the staggered susceptibility is passing through a maximum
at a J value approximately equal to the critical value J; separating the two domains § =0
and § = 1. This maximum happens for all finite temperatures, the staggered susceptibility
diverging only at strictly zero temperature and J = J.. In the present case, one obtains
Jo=00019%or J,=225Kfor A=1¢eV,

Let us examine the behaviour of the three susceptibilities in the zero-temperature limit.
First, the expression F(E,, — E,y) diverges when the energies E,, and E, are equal to each
other and equal to the ground state energy. Then in addition, the susceptibilities diverge
only if the mairix elements in front of F(Ey, E,) are non-zero when the temperature tends
to zero. For J < J,, the ground state is Ej3 and § = 0; according to the formula (25) of
appendix A, all the matrix elements are equal to zero and the three susceptibilities remain
finite for T ~ 0 and J < J.. In contrast, for J > J;, the ground state is Ez and § = 1;
the matrix elements in equations (11) and (12) are non-zero and x and x@ diverges, while
% remains finite for T —> 0. Finally, at J = J,, E;; = Eg and the three susceptibilities
are diverging. Thus, the staggered susceptibility diverges at J = J;, for T — 0, while the
two other susceptibilities ¥ and x© diverge for J > J..

The next question to answer is that of the occurrence of the Kondo effect in the
two domains with § = 0 and § = 1. In this oversimplified model with a zero-width
conduction band, the relevant quantity for studying the ‘Kondo effect’ on each site, i.e. the
compensation of the f magnetic moment by the d magnetic moment, is the d-f correlation
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* Figure 2. Plot of the local d~f cotrelation function {5 - 59} {a) and of the two-site f correlation
function {SF . 8%} (b) for J < J; (dashed lings) and J > J; (full) 2s a function of temperature,
for Ve03,t=3,and U=1.

function on the same site, (S? - ST). Figure 2(a) gives the temperature dependence of the
d—f correlation function on the same site ST - %), for two values of the parameter J below
and above J.. We can see that the on-site correlation function remains very small and that
there is almost no spin compensation due to the Kondo effect: at very low temperatures the
correlation function corresponds to roughly 1/100 of the S = 1 value for J > J. and of
the § =0 value for J < J.. Thus, there is a very weak Kondo effect for J < J.. On the
other hand, figure 2{b) shows the f—f correlation function {S? - SI), At low temperatures the
correlation function is characteristic of an antiferromagnetic coupling (S = 0) for J < J,
and a ferromagnetic one (§ = 1) for J > J,.

Figure 3 gives the temperature dependence of the three susceptibilities in the same
system with A = 1 for a value of J smaller than J, and the curves are similar to the ones
previously derived for the case J = 0 and with only an on-site hybridization term [11]. The
local and staggered susceptibilities show a plateau below a temperature Tk of order 10~*
(or 10 K for A = 1 €V}, indicating a weak Kondo effect with a2 Kondo temperature Tx.
The uniform susceptibility goes through a maximum with decreasing temperature tending
to zero.

4000 - Q3

2000

>3 2000F°

1000

[ . . - —_— .
103 X 304 104 102 109

Figure 3. Plot of the local (full line), uniform (dashed)  Figure 4. Plot of the two-site f comrelation function

and staggered {dot-dashed) susceptibilities as a function {Sf . Sg) as a function of temperature for six different

of temperature for the same parameters as in fipure 1 values of #: ¢ = O (upper curve), 0.02, 0.04, 0.06, 0.08

and J =0. and 0.1 (lowercurve) and U/ = 1, Vi = 0.06, 15 = 0.02
and J = —107%,
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Thus the transition occurring at J, corresponds to an antiferromagnetic—ferromagnetic
transition for the f elecirons, without appreciable Kondo effect on the two sides. So, the case
Vi1 = W, gives a very weak Kondo effect, in contrast fo the classical Anderson Hamiltonian
with only an hybridization term between d and f electrons on the same site.

4. Discussion of the theoretical results with different values of V; and V5

In this section, we study the general case with different values of Vi and V; and Uy — o
The Hamiltonian (1) with ¥} # V. cannot be solved analytically and the determination
of both the eigenvalues and eigenfunctions needs numerical calculations. Thus, we will
present here the main results obtained for V; different from Vj. The general behaviour of
the susceptibilities versus increasing J values is similar here to that shown on figure 1 for
V1 = Va; in particular, the staggered susceptibility exhibits a maximum at a critical J value
for finite very low temperatures. In the zero-temperature limit, the staggered susceptibility
diverges only at J = J,, while x and x® diverge for J > J; and remain finite for J < J,.

In order to study the occurrence of the Kondo effect as a function of ¥, and V; we
have plotted in figures 4 and 5 the two correlation functions (S - Sf) and (81 . 8%) as a
function of temperature for different values of ¥ and V5 (V; = 0.06 and a much smaller
Vs value, V5 = 0.02). The different curves are plotted as a function of #, from ¢t = 0 to
t = 0.1 (in the usual unit system with A = 1). Tt is interesting to discuss here this choice
of parameters; in fact, if one takes the previously chosen value ¢/A =3 of section 3, one
obtains no Kondo effect, exactly as is shown in figure 2(b}. The Kondo effect exists only
for very small values of ¢ and consequently we have chosen small ¢ values in order to study
clearly the influence of ¥, on the Kondo effect.

01
=
p=
£ k=
¢ 03k []
73 5
v o

05}
105 104 103 102 107 0.00 0.03 0.06 009 01z

T Va

Figure 5. Plot of the local d=f correlation function
{55 + 5%) as a function of temperature for six different
values of r: t = 0 (Jower curve), 0.02, 0.04, 0.06, 0.08
and 0.1 (uppercurve) and U =1, V1 = 0.06, V2 = 0.02

Figare 6. Plot of the local d—f comelation function
{8t .84} (dashed) and the two-site f correlation function
o Sty (fulh) as a function of Vs for ¢ = 0.02,
Vi=006U=1and J =-10"%,

and JF = —-10"4,

One can see that the d—f correlation function is of order —0.5 at very low temperatures,
for very small values of ¢, while it increases rapidly with increasing ¢. Conversely, the two-
site T-f correlation function is almost equal to zero for ¢ = 0, as expected, and decreases
rapidly when increasing ¢t. Thus, at very low temperatures one goes from a Kondo-like
behaviour with ferromagnetic-like coupling between the two sites for ¢ = 0 to a magnetic
behaviour on each site with an antiferromagnetic-like coupling between the two sites for a
larger t value, of the order of 0.1.
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In fact, in our approach, since there is only one d level and one f level on each site,
the Kondo effect is understood as giving a negative value close to —3/4 for the d—f on-site
correlation function (Sf . .S'f) indicating a ‘compensation’ of the f magnetic moment by the
d magnetic moment, In fact, even for a very small ¢ value, as shown on figure 5, the Kondo
effect is incomplete since the negative value of the d—f correlation function remains still
larger than —3/4.

The three susceptibilities x, x™ and x® exhibit the same behaviour for the set of
parameters used in figure 4 and 5 as that previously shown in figure 3, i.e. a Curie-
Weiss behaviour at high temperatures and a plateau at low temperatures below a given
temperature Tg. Also, the staggered susceptibility is larger than the uniform one. The
differences between the different cases lie in the value of the so-called Kondo temperature
Tx and consequently in the very low-temperature values of the local susceptibility. i is
of order 105 (in A = Eg ~— Eg units) in figure 3, with ¢ = 3; and of order 10~3 for the
previous set of parameters with ¢ = 0.08 and 1072 with t = 0.01. As a consequence, the
very low temperature value of x decreases with increasing Tg (or decreasing ¢) and varies
usually as 1/ Tk, as expected within the Kondo theory. Thus, we see that Ty is obviously
larger when the d-f correlation function is more negative at low temperatures.

Finally, figure 6 gives the very low-temperature values of both the &£ correlation
function {Sf - S%) and the two-site  correlation function {S% - SI) as a function of the
parameter V, for a given value of Vj, from V; = 0 to a large value V3 = 2V;. The d-f
correlation function increases from a value close to —3/4 to a value very close to 0 for
V2 equal or larger than Vj. Conversely, the two-site f correlation function decreases with
increasing V5, passes throngh a minimum for V» = V| and increases again for V, larger than
Vi. Thus, the inter-site hybridization V; tends to suppress the Kondo effect which exists
only when both ¢ and V; are small compared to the intra-site parameters Ex — Ey, 7 and
Vi-

5. Concluding remarks

Thus, our simple ‘molecular” model gives a typical Kondo behaviour for the magnetic
susceptibility, in agreement with previous results [12]. The staggered susceptibility passes
through a maximum for non-zero temperature at the critical J value separating the two
magnetic regimes. However, we have shown here that the addition of the inter-site
hybridization term V; tends to suppress the ‘Kondo effect’, i.e. the compensation between
f and d magnetic moments, and to restore the antiferromagnetic coupling. In particular, we
have treated, analytically, the case Vi = V2 and we have shown that there remains only a
very weak Kondo effect on the two atoms when there is an antiferromagnetic-like coupling
between the f magnetic moments of the two atoms. Finally, in cur study with different V;
and V; values, we have also shown that the Kondo effect exists only for small ¥, and ¢
values. In spite of its crudeness, our model provides interesting information on the role of
the two-site hybridization term ¥, and confirms the effect of the intersite exchange coupling
J and of the d—d hopping term ¢ on the magnetic properties of the system.
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Appendix A.
The three eigenfunctions corresponding to the eigenenergy Ej are given by |S, S;, Eg)

sinB
[ fl-tf21~ (dIszJ, +dz¢ - 11 1¢ dZsz.!,)

cosf ;

-SLaldl, (rhl, - sl — Fhydly + Fyaly) [0 aD

Il’ 1, Eg) -

_1- R AY W W
11,0, Eg} = W {smﬁ (fnfu - fz¢ﬁ¢) (dndu +dyydyy —dpydyy — dmdu)
+oos p[diydl, (e, —dly 7l - thyel, + iy )

vaydh, (rhel, - dlysly - el +dly i) |0 a2)
11, =1, Bg) = [ L i, (d;erzL +djyd], ~ djyd], — dztdu)
COSﬂ di\dl, (d”f h — A, —dh A, +d11‘ffgi)] 10} (A3)
with
cosp = |2 5+ FottU-J " (Ad)
4/(Bo—t +U — J[202 + 4V?

and the eigenfunction comresponding to the eigenenergy Ej2 is given by
10,0, B} = far (£ £, + i Aly) (dlidl, + i, - afyal, — b))

+ap [dhydl, (fhal, +dly ol + £, + dly 4,

+dfydl, (ol +dfy fh, + hdly + dly )| + asdfydl dldf o) a5)
where we use both the notation of table 1 and the following

= Qa, (A6)
- Pay (A7
= [8c2+ 1) + P2} *9
= z_z : (49
0= 2y | (410)

WE—D+U+J—En
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